faill, parait-il, emporter une première mention au barrage préélectif...

Si les cinéastes-amateurs se partagent c'est que leur sens critique existe bel et bien et cela vaïlait la peine — 6 combien ! — d'être signalé...

PRENEZ NOTE !...

SUIVEZ LE NEUF-CINQ. —
Le label ci-dessous symbolise l'association qui vient de sortir leurs éléments dynamiques que le format du « juste milieu » compte aussi bien parmi les cinéastes que dans les rangs des fabricants et des revendeurs spécialisés.

le club 9,5

Une « revue-club », une documentation exhaustive sur tout le matériel et ses accessoires pouvant intéresser ce format, un service d'information et de contrôle du matériel sont mis à la disposition de tous les membres.

Il est fait appel à la curiosité des huitistes et des tenants du 16 (les « mordus » du 9,5 étant déjà considérés comme adhérents d'office) pour qu'ils informent plus amicalement sur ce programme en échangeant au « Club 9,5 », 49, rue Satyri-Reach, Paris 16.

CONCOURS EUROPÉEN DES SCÉNARISTES : le Service de Presse et d'Information des Communautés Européennes organise une compétition entre scénaristes amateurs ou professionnels pour la réalisation d'un film documentaire (de 20 à 40 mn) et d'un film d'animation (de 15 à 20 mn) destiné à promouvoir l'idée d'une Europe Communautaire. Les scénarios, d'un volume de 30 pages au minimum et 50 au maximum, peuvent être dactylographiés en allemand, français, italien ou néerlandais, au choix.

Date limite d'envoi : 31 juillet ; proclamation des résultats : 30 novembre. 1er Prix : 60.000 F. Belges, deuxe 2e Prix de 50.000 F. Belges. Brochure contenant l'exposé des thèmes à imaginer et tous les détails du règlement adressée sur simple demande au : Service de Presse et d'Information des Communautés Européennes, Divison « Radio-TV-Cinéma », 224, rue de la Loi, Bruxelles (Belgique).

LES SCÉNARIES DE L'I.C.S.

L'Institut de Cinématographie Scientifique, français, britannique et italien, a publié, annoncé, pour l'année en cours, sa nouvelle série de scénarios projetée au Palais de la Découverte, à Paris, les 22 mai, 19 juin, 30 octobre, 27 novembre et 18 décembre.

STRUCTURE D'UN FILM MONOPACK INVISIBLE, reproduisant les couleurs par synthèse coulouristique. — 1 : couche anti-éblouissante; 2 : couche d'émulsion en jaune et arrière-plan jaune; 3 : 3 couches de colorant; 4 : 4 couches de colorant; 5 : film de base; 6 : film de couleur. Pour un film de couleur, les couches de colorant sont remplies de colorants à base de dioxyde de titane, de colorants à base de chrome et de colorants à base de cobalt.

ÉQUILIBRE ET DOMINANTES. — Une émulsion serait parfaitement équilibrée si ses trois couches, ayant une même sensibilité et un même facteur de contraste, aboutiraient à la superposition des trois courbes correspondantes comme en A. En fait, le déviation exercée de l'une des courbes entraîne une diminution uniforme comme en B (où le déplacement de la courbe magenta vers la droite se traduit par une diminution de la courbe cyan). Pour les deux courbes, la sensibilité est théoriquement identique, et en P la courbe pratiquement obtenue par chacune d'elles dont l'intensité sur les courbes visibles correspond à une reproduction satisfaisante de sujets ne comportant que rarement des tons primaires purs.

ÉQUILIBRE ET DOMINANTES. — Une émulsion serait parfaitement équilibrée si ses trois couches, ayant une même sensibilité et un même facteur de contraste, aboutiraient à la superposition des trois courbes correspondantes comme en A. En fait, le déviation exercée de l'une des courbes entraîne une diminution uniforme comme en B (où le déplacement de la courbe magenta vers la droite se traduit par une diminution de la courbe cyan). Pour les deux courbes, la sensibilité est théoriquement identique, et en P la courbe pratiquement obtenue par chacune d'elles dont l'intensité sur les courbes visibles correspond à une reproduction satisfaisante de sujets ne comportant que rarement des tons primaires purs.

CURVES COMPARÉES DES KODACHROME II I et L. — Les densités sont prises en référence pour rapport à des densités neutres visuellement équivalentes.
Les laboratoires à notre service (3)

LES COURBES DES ÉMULSIONS EN COULEUR & LES CARACTÉRISTIQUES GÉNÉRALES DU FILM

PAR FRANTZ SCHMITT & JULIUS RASCHEFF

L'ELLE soit de type négatif-positif, ou bien inversible, que ses « copulants », agents chimiques donnant naissance à un colorant soient incorporés à l'émulsion — comme dans le cas de l'Agfacolor, du Dyeacolor, du Ferrania-color, de l'Anscocromme, etc. — ou introduits dans le bain de développement — comme pour le Kodachrome, le Timbrochrome, etc. — une émulsion couleur, comporte toujours, à la différence d'une émulsion courante en noir et blanc, un certain nombre de couches distinctes ayant chacune une sensibilité sélective.

Si, en effet, un film couleur peut se composer d'une dizaine de couches différentes, comptant tenu des intermédiaires, protectrices, anti-hale, filtrante, etc., seules nous intéressent, pour l'analyse caractéristique, les trois couches sensibles, susceptibles d'influer, de manière importante, sur le résultat final que nous espérons de notre film ; nous terminerons donc ce chapitre en passant brièvement en revue les principales d'entre elles.

De la même façon que pour le noir et blanc, l'on reporte les lectures faites au densitomètre sur un papier millimétré et l'on obtient, pour chaque plonge, trois mesures correspondant aux différentes densités lues derrière les trois films, la liaison de ces différents points donnant trois courbes, dites de densité intégrale, et qui d'ailleurs ne correspondent qu'imparfaitement aux couches élémentaires, par suite d'absorptions indésirables des colorants ; il n'est toutefois pas tenu compte de ce facteur dans une mesure courante. Notons seulement que les sensibilités couleur nécessites plus de lumière que les scénographies utilisées pour le noir et blanc — le film couleur étant plus lent — et qu'ils sont tous de type à temps constant et à intensité variable (1) (sensibilité Kodak type 6, à haute intensité, par exemple) afin d'éviter toute erreur de réciprocity susceptible d'influencer de façon inégale les trois couches élémentaires.

Théoriquement, les trois courbes de densité de chacune des trois couches séparées devraient se trouver superposées pour donner ensemble du blanc ou respectivement (jaune + magenta + cyan) un gris neutre. En fait, elles ne s'avançaient même pas, le plus souvent, rigoureusement parallèles, et se croisent au pied ou dans l'épaule. Cette constatation signifie essentiellement que l'image d'un objet gris peut présenter une dominante variable, les rapports densité/exposition n'étant pas, pour chaque couche, fortement analogues.

Ainsi, pour prendre l'exemple d'un produit connu, ou peut constater que la dominante change légèrement selon les points de la courbe ; cette dominante nous est rendue sensible, pourrait-on dire en simplifiant un peu, par le non-parallélisme le plus évident d'une courbe ou partie de courbe avec les deux autres : ainsi dans la zone 3 de notre figure 2 où se situe l'épaule, si l'on considère que les courbes les plus semblables (parallèles ou confondues) du Kodachrome II, sont les courbes b et c, la dominante est celle de la couche a, c'est-à-dire cyan, laquelle sensible au rouge, introduit une très légère dominante rose pour nos valeurs de gris prises en référence ; en zone 2, nous constatons que les trois courbes demeurent, approximativement parallèles : c'est vers quoi tendent tous les fabricants, qui s'efforcent de réaliser ainsi un rendu correct des gris dans la zone rectiligne, en ajustant les courbes. Dans la zone 1, celle du pied, la courbe a de la couche cyan s'infléchit en dessous des courbes b et c, d'où présence d'une dominante des deux autres couches. Au contraire, pour l'émulsion antérieure à celle-ci, le Kodachrome I, c'était, pour cette même zone 2, la courbe b c'est-à-dire magenta, qui apparaît en proportion insuffisante et laissant place à une dominante bleutée ou rougeâtre (fig. 3).

Plusieurs constatations s'imposent donc, directement ou indirectement, à la simple lecture d'un faisceau de courbes d'un film en couleur, mais il serait trop long et peut-être un peu fastidieux de nous étendre ; notons donc seulement que :

- Les densités peuvent être traduites différemment, pour une même exposition, dans chacune des trois couches, et, partant,
matériel plutôt que tel autre en se basant exclusivement sur ce critère, évidemment très important, mais qui n’est pas le seul dont il faut tenir compte.

Le calcul, par le fabricant, de cette rapidité, qui est l’expression de la sensibilité du film envers la lumière, est une application directe de la sensométrie, puissante, qu’est le système de détermination employé. Elle s’établit à partir d’une partie au moins de la « courbe de noircissement » de l’emulsion. La rapidité est fonction de l’exposition en un point spécifique de la courbe caractéristique : le choix d’un tel point a toujours été l’objet de controverses multiples et il est pourtant que les différentes systèmes de sensibilité ont établi leurs normes sur des bases dans une certaine mesure arbitraires : le but était de définir pour chaque matériau photographique un point convenable sur la courbe, tel que son exposition ait une relation constante avec l’exposition nécessaire dans la caméra, au moment de la prise de vue, pour obtenir un résultat satisfaisant.

Quoi qu’il en soit, les fabricants se référant souvent à des systèmes différents, on a dû obligé d’établir, pour les besoins de la pratique, des tables de corrélation approximatives entre les rapidités d’origines différentes.

Ajoutons seulement que, dans le cas des films couleur, la rapidité peut être légèrement différente d’une couche à l’autre. Ainsi, dans les films adaptés à la « lumière du jour », par exemple, la rapidité intrinsèque de la couche jaune — sensible au bleu — est généralement plus faible que celle des deux autres couches, ceci à cause d’une proportion relativement plus grande de radiations

LA CONTAMINATION. — Si lors du développement chromogène de la couche cyan par exemple, le coulant agit non seulement sur les zones exposées de la couche en question mais également, quelque d’une manière diffuse, sur une zone vierge de la couche voisine, il y produit une tache para-sitée. Actuellement les risques de contamination sont très rares, notamment en raison de la présence de couches de gélatine incrustées, isolant les couches sensibles les unes des autres et constituant autant de barrières de protection en la matière.

LE SENSITOMÈTRE DE CONTROLE. (à droite) est fourni, non seulement, au laboratoire qui le traita simultanément avec les films de la cliente, mais aussi à l’usine qui les fournit. Le sensomètre de contrôle fait autoriser l’objet d’une série de mesures qui servent à leur équilibre de couleur et l’absence de contamination. Les résultats obtenus ne peuvent varier qu’à l’intérieur d’étroites limites, rigoureusement définies (fig. 4).

Les courbes sensométriques des films couleur étant cependant rarement fournies par les fabricants aux amateurs, et pour cause, c’est toutefois essentiellement sur d’autres caractéristiques que se basent des évaluations inversibles, particulièrement, que nous nous efforcerons maintenant d’apporter quelque lumière.

LES CARACTÉRISTIQUES DE RAPIDITÉ

C’est incontestablement l’indicatif la mieux connue par l’amateur qui, quelqu’fois à tort, portera son choix sur tel...
bleues, par rapport aux radiations rouges ou vertes, de la lumière blanche (2). Ceci nous amène à envisager une autre caractéristique importante des émulsions :

LA SENSIBILITÉ SPÉCRALE DES FILMS NOIR ET BLANC

Chacun sait que la lumière blanche se compose d'un grand nombre de radiations monochromatiques simples, décomposables par un prisme, et définies par leur longueur d'onde, exprimée en millimicrons. L'œil enregistre toutes les radiations allant du violet au rouge, avec un maximum de sensibilité au vert-jaune ; de même une émulsion photographique en enregistre également toutes les radiations, mais dans des proportions différentes, en fonction de la sensibilité de ses constitutants, enregistrant différemment telle ou telle radiation de longueur d'onde donnée.

L'histoire des surfaces sensibles est celle d'une longue suite de recherches tendant à l'obtention d'une émulsion isochromatique parfaite, c'est-à-dire ayant une réceptivité semblable à celle de l'œil. Les premières émulsions en noir et blanc ne furent sensibles qu'à l'ultraviolet, au violet et au bleu, puis grâce à des agents sensibilisateurs, apparurent tour à tour les émulsions orthochromatiques devisant le spectre s'étendant jusqu'au vert et au jaune, orthochromatiques ; allant jusqu'au rouge observé, panchromatiques ; sensibles au rouge, et superchromatiques susceptibles d'une sensibilisation jusqu'aux radiations infrarouges... En fait, on n'est pas encore parvenu à créer une émulsion parfaite, dont la courbe soit rigidement semblable à celle de l'œil en vision normale. L'effet visuel des couleurs et l'effet photographique demeurent donc différents.

La détermination de la sensibilité spectrale ou chromatique se propose de définir la réponse propre d'une émulsion donnée à chacune des différentes couleurs du spectre. Pour ce faire on utilise généralement un appareil nommé spectrographie à cône, qui divise, au moyen d'un dispositif optique appelé réseaux de différentes longueurs d'onde, en interposée, devant la fente du spectrographe et sur le trajet lumineux, un cône photométrique gris neutre, du type utilisé dans le densitomètre et l'on obtient ainsi, d'un bout à l'autre de la fente, une simulation de la lumière reçue par celle-ci, suivant une progression conue.

Une plaque de verre, directement graduée en longueurs d'onde, est appliquée sur le film au moment de l'exposition, de telle sorte que les longueurs d'onde correspondant au noircissement du film s'inscrivent, après développement, sur chaque plaque du film le long du spectre, et indiquent la sensibilité relative de l'émulsion à la lumière d'une radiation donnée. (Fig. 3)

Le résultat obtenu fournit un spectrogramme, fréquemment communiqué par les fabricants pour leurs différentes émulsions. La lecture d'un spectrogramme, dont l'aspect diffère selon qu'il a été établi à la lumière du jour à la lumière artificielle, parce que le spectre d'émission n'est pas identique dans les deux cas, nous livre des résultats intéressants qui correspondent en général aux remarques précédentes, plus qu'à l'instrument. Nous pouvons, notamment, par le choix de filtres appropriés à la prise de vue, établir un certain équilibre. Supposons, par exemple, une émulsion particulièrement sensible au bleu-violet et un sujet pour lequel nous désirons rendre les verts avec un maximum de détail : un filtre vert devant l'objectif restituerait le « maximum au vert » de la vision normale en absorbant les radiations bleu-violet ; ceci toutefois, au moins en partie, au détriment de la sensibilité utile de l'émulsion, puisqu'on n'utiliserait pas cette sensibilité pour les radiations irrégulières. Plus simplement encore, toujours en noir et blanc et pour un sujet ne présentant que peu de "contrastes de couleurs", nous pourrons éviter un film dont la sensibilité à ces différentes couleurs sera sensiblement la même, au profit d'un film plus susceptible d'avantage le rendu de l'une d'entre elles donc l'accentuer par des valeurs de gris assez différenciées les différentes plages de ce sujet.

C'est tout le problème du "rendu des couleurs" qui s'oppose, dans une certaine mesure, à celui du contraste des brises, puisque d'une part nous devons traduire par des valeurs de gris différenciées des couleurs différentes, et d'autre part exprimer un rendu exact des lumières et des ombres, qui peuvent être analogues et devraient donc être traduites par des gris analogues sur des plages du sujet de couleurs différentes. La connaissance des courbes de sensibilité
spectrale des émulsions doit donc essen-
tiellement, en tout et en tout, permettre
à l’opérateur de pouvoir faire un choix,
et de procéder de façon sûre. Il n’est vrai-
sûr qu’il y a plusieurs détails à savoir pour
employer les filtres les mieux appropriés.

Bien entendu l’importance relative des
raccordements de sensibilité spécifiques
est fonction de la nature de la lumière du
jour ou artificielle. En extérieures, c’est
précisément ce qui détermine la répartition des
brillances que nous devrons accorder toute
notre attention, le rendu des couleurs étant
assuré par un choix opportun de l’émulsion
et de filtres (encore que la tempéra
ture de la lumière du jour soit un facteur
variable), où nous pouvons régler la répar
tis. Lumineuse, c’est surtout l’équilibre
des couleurs que nous auras à surveiller,
compte tenu alors de la sensibilité chro-
matiquement relativement plus grande dans
le rouge avec la plupart des émulsions
conçues pour l’éclairage artificiel. On
saurait donc composer valablement
deux spectromètres d’émulsions dif
dérentes, établis l’un en lumière du jour,
l’autre en lumière artificielle.

LES SPECTROMÈTRES DES FILMS EN COULEURS

Pour les films en couleur, on convient de
raccorder les courbes de sensibilité spec
cifiques correspondant à chacune des trois
couches, lesquelles diffèrent (fig. 6)
une à l’autre, d’une part, et selon leur
destination d’emploi, soit en « lumière du
jour », soit en « lumière artificielle »
d’autre part. Entre les trois couches
bleu, vert et rouge, on a donc les quatre
couches cyan et jaune s’intercalant de
la courbe de sensibilité de l’œil, seule la
couche magenta (sensible au rouge et
au vert) s’en rapproche sensiblement.

Pour le type de film invertible couleur ci
cité, la sensibilité spectrale s’avère donc
à peu près égale en intensité, sinon sensi-
blement, avec toutefois une légère
dominance dans le bleu-violet, particu-
lièrement dans le cas du film de type A,
equilibrée pour une source lumineuse
artificielle de 3,400 F, dans les trois
couches principales produisant donc
bien les trois couleurs primaires bleue,
verte et rouge, mais différenciation d’une
taille plus grande, puisque la courbe a-b-c-
d couvrant, la sensibilité chromatique
globale de l’ensemble, est nécessaire
pour restituer l’impression visuelle ; le problème
semble donc ne pouvoir être résolu, que
par la découverte de « coupures », expri-
mant de façon plus justes les valeurs extré-
mes, bleue et rouge.

Précisons encore, que, du fait de leur plus
grande sensibilité intrinsèque au bleu,
les films inversibles de type A peuvent
être utilisés également en lumière du jour,
hors tout de même, à la condition de
sans perte exagérée de sensibilité ; par
contre, l’utilisation d’une émulsion de
type B (bleu de coloration artificiel, également
possible avec interposition d’un filtre),
entraîne une réduction importante de la
réticulation de la couleur, ce qui est compréhensible.
De même, l’utilisation d’un film
couleur inverse, à des températures de couleurs différentes de celles données
en référence par le fabricant lors de
l’établissement des courbes de sensibilité
spectrale, conduit à l’apparition de dona-
mants (3) beaucoup plus difficiles —
— sinon pas du tout – retouche-
ables, alors qu’une possibilité de correction
subsiste dans le cas d’un procédé négatif
positif.

Insistons à nouveau sur l’importance
que l’on a à se procurer, pour les films impor-
tants, la totalité du néo-éclairage nécessaire en
e une seule fois, c’est-à-dire appartenant à
une même « gamme d’émulsion », lequel est
toujours clairement indiqué sur l’émulsi-
lage. On évitera ainsi l’inconvénient d’avoir
eventuellement à raccorder, à l’intérieur
d’une même séquence, des plans présent
ant de légères variations de tons. Rappel
lors aussi que le fait de procéder au
développement secondaire que possible met le
film imprimé à l’abri de pertes de
saturations, d’effets de voile, et parfois
d’incendie et de brûlures ver
dites.

Notons, pour terminer, que l’adject
cion de certains types de colorants
sensibilisateurs dans les émulsions, au
cours de leur fabrication, peut conférer
aux sels d’argent une sensibilité spectral
élevée, dans le proche infrarouge,
pour certains types particuliers d’émul-
sions, jusqu’à 1 400 millimicrons environ.

L’alignement parfait des courbes de
sensibilité chromatique d’émulsion sur
celle de l’œil n’est toutefois pas d’un
absorber les chimistes !

LES CARACTÉRISTIQUES PHYSIQUES DES ÉMULSIONS

Nous pouvons, dans le cadre de
notre propos, que les énumérer somma
irement, nous préoccuper de se limitant à
ce qu’elles ne soient pas utilisées à tort
par les usagers.

• LA DÉFINITION (ou netté)

C’est le terme général désignant la pro
prité que la reproduction de l’image offre
e l’œil du spectateur d’y distinguer de
fins détails. Ainsi, à la projection, la
définition est déterminée par le niveau
le plus important, le plus
général, est un problème d’échelle, notam
ment de la surface, de l’extrémité, la
distance de l’objectif à l’écran, des dimen
sions de celui-ci, de la puissance lumi
nuse.

La définition d’une image cinématog
raphique résul
t donc d’un ensemble de
vecteurs dont les principaux, hormis
certains qui viennent de la reproduction,
peu
vent être présentés dès la phase d’enre
gistrement de l’image. Sans parler même
de propriétés propres de l’objet, dont
la structure aussi bien que l’ouverture
géométrique jouent sur la définition
résultante, nous pouvons constater que
le contraste dans les détails d’une
image influe sur la netteté apparente.
Ce contraste est en relation directe du
rapport des luminosités extrêmes, exprimé
une opposition plus ou moins franche
bles de variations (5) qui contribue à l’in
pression de netteté ; le contraire d’une
eupé e éventuellement, plus celle-ci
apparaissait nette (4).

• L’ACUTANCE, telle que définie
par Jones et Higgins, est, sur l’émission,
• L’IRRADIATION, est un espèce
d’insolation des cristaux de broche de
d’argent voisin de l’image formée sur
la couche sensible ; cette diffusion
produite par réflection de la lumière sur
les facettes des cristaux dispersés de
manière discontinue dans la gelatine,
entraîne une diminution de l’intensité de
l’image optique impressionnant l’émul
sion, ce qui nuit, bien sûr, à la netteté.

Evidemment, plus la couche sensible est
mince, et plus la netteté est grande.
En couleur, la superposition des trois
couches et de l’intercouche-filtre tend à
accroître l’épaisseur et donc à diminuer la
nettét de ; l’ordre même des couches,
disposés en général, pour les négatifs
et inversibles, en fonction des besoins de
fabrication, dans l’ordre : jaune,
piquant, cyan, peut encore diminuer la
nettét en effet, celle-ci est naturel
lement déjà plus faible pour la couche
centrale magenta, et encore moindre
pour la couche inférieure cyan et, physio
logiquement, la contribution du cyan
et magenta (sensibles au rouge et au
vert) est capitale dans l’impression de
 netteté, bien plus importante que celle
de la couche jaune, sensible surtout au
bleu ; la position relative pratique des
couches est donc déterminée par
l’ordre de superposition des couches,
la couche d’impression, d’une surface
absorbante noire anti-halé, qui est élimi
née ensuite en cours de traitement.

• LE POULV RÉSOLVANT

rejoint la notion générale de définition.
C’est aussi, qualitativement, l’appréciation
de l’émulsion à reproduire les détails de
l’image, mais, on s’y reportant précisément pour un nombre maximum de traits parallèles équidistants que l’on
COURBES ASSOCIÉES DES 3 SPECTRO-GRAMMES D'UNE ÉMULSION INVERSIBLE COULEUR (KODACHROME II)

peut compter par millimètre sur la photographie de l'image d'un réseau pris dans une série dont les traits sont de plus en plus rapprochés et plus fins.

Pour un positif normal, le pouvoir résolvant est de l'ordre de 50 lignes ou traits par millimètre, pour un inversible noir et blanc il peut être de l'ordre de 65 à 100 lignes par millimètre, dans des conditions optimales et pour atteindre 165 lignes pour une émulsion positive à grand contraste, mais il est limité par l'irradiation, la température, la durée et le mode de développement choisi.

LA GRANULATION. Nous avons déjà dit que la couche photosensible est constituée par la gelatine dans laquelle se trouvent répartis des grains d'halogénure d'argent, c'est-à-dire, de dimensions variables suivant la nature et la sensibilité de l'émulsion.

Bien qu'en cours de fabrication, on s'efforce d'obtenir, dans la gelatine, une répartition aussi régulière que possible de ces cristaux, celui-ci reste, plus ou moins, un hasard. Notons en passant que, bien qu'en théorie la sensibilité de l'émulsion ne soit pas liée à la grosseur des grains, une émulsion rapide à gros cristaux en compte moins, par centimètre carré, qu'une émulsion lente dont les cristaux sont plus petits (pour une émulsion rapide en noir et blanc, par exemple, on compte environ 500 millions de grains de 0,2 à 0,3 μ de diamètre au centimètre carré, contre plusieurs milli- miliards de grains de 1 μ pour une émulsion positive de taille). Après développement, le révélateur ayant réduit les cristaux à l'état d'argent métallique, celui-ci, constituant l'émulsion photographique, subit sous l'aspect d'amas de particules élémentaires formant de petits déposés plus ou moins denses de grains microscopiques ; la discontinuité dans la répartition des grains de l'émulsion vire, seule, au microscope, s'est donc transformée, après traitement, en une structure nouvelle, où les grains nets par la lumière se sont accumulés — alors, les cristaux non nets seraient d'étage au cours du développement — de sorte qu'on peut constater avec une simple loupe.

Ce phénomène de composition, d'accumulation de l'image une apparence granuleuse que l'on définit comme étant la granulation. Celle-ci donc dépend en fin de compte de la densité et de l'épaisseur de l'émulsion, de la température de développage et de la qualité de l'émulsion.

La rapidité du développement joue en général sur la granulation ; pour un noir et blanc, un révélateur rapide augmente la granulation ; enfin, lors de l'exposition de l'image, la granulation est dépendante influencée par l'amplitude de la sensibilité ; sans forte sur exposition conduit à une granulation plus poussée.

Les courbes de la figure 5, Pratique du développement chromogène, sur laquelle nous aurons l'occasion de revenir, amène dans la mesure normale de l'émulsion la formation d'amas de colorants relativement importants par rapport à la dimension des grains d'argent qui leur ont donné

naissance ; ce phénomène augmente encore, artificiellement, la granulation.

On conçoit aisément que la superposition de trois couches d'émulsions différemment composées amène des interactions réciproques qui ne vont pas sans problème. Ceci explique, dans une certaine mesure, la sensibilité moins élevée des films couleur dont on a dû réduire la grosseur de grains, et corrélativement la sensibilité, pour arriver à un résultat satisfaisant.

Enfin, sans entrer dans les détails, signalons que la diffusion du colorant formé autour du grain d'argent joue sur la granulation, celle-ci étant moindre si le colorant diffusé, ce qui amène l'amas de grains de se fondre entièrement, le colorant se dirait alors autour d'eux ; mais dans ce cas, c'est la définition qui s'en ressent.

Ainsi, et presque paradoxalement, selon la nature des coulants, il est possible de diminuer la granulation, mais en consentant à même temps à limiter la définition, et vice versa ; on voit par là combien ces deux notions ont un sens propre, qu'il importe de ne pas confondre.

Ce quelques brèves précisions sur des termes rencontrés fréquemment par l'usager ne font certes pas le tour d'horizon complet des problèmes posés en la matière, mais il nous a semblé nécessaire de les préciser avant d'extérioriser plus en détail un certain nombre d'opérations prenant l'importance qu'on doit leur accorder.

DANS UN PROCHAIN NUMERO:
LA FORMATION DE L'IMAGE AVANT ET PENDANT LE DÉVELOPPEMENT

135